Sensitivity Analysis of an Individual-Based Model for Simulation of Influenza Epidemics

نویسندگان

  • Elaine O. Nsoesie
  • Richard J. Beckman
  • Madhav V. Marathe
چکیده

Individual-based epidemiology models are increasingly used in the study of influenza epidemics. Several studies on influenza dynamics and evaluation of intervention measures have used the same incubation and infectious period distribution parameters based on the natural history of influenza. A sensitivity analysis evaluating the influence of slight changes to these parameters (in addition to the transmissibility) would be useful for future studies and real-time modeling during an influenza pandemic.In this study, we examined individual and joint effects of parameters and ranked parameters based on their influence on the dynamics of simulated epidemics. We also compared the sensitivity of the model across synthetic social networks for Montgomery County in Virginia and New York City (and surrounding metropolitan regions) with demographic and rural-urban differences. In addition, we studied the effects of changing the mean infectious period on age-specific epidemics. The research was performed from a public health standpoint using three relevant measures: time to peak, peak infected proportion and total attack rate. We also used statistical methods in the design and analysis of the experiments. The results showed that: (i) minute changes in the transmissibility and mean infectious period significantly influenced the attack rate; (ii) the mean of the incubation period distribution appeared to be sufficient for determining its effects on the dynamics of epidemics; (iii) the infectious period distribution had the strongest influence on the structure of the epidemic curves; (iv) the sensitivity of the individual-based model was consistent across social networks investigated in this study and (v) age-specific epidemics were sensitive to changes in the mean infectious period irrespective of the susceptibility of the other age groups. These findings suggest that small changes in some of the disease model parameters can significantly influence the uncertainty observed in real-time forecasting and predicting of the characteristics of an epidemic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Modular Modeling for Analysis of Closed-Cycle Absorption Cooling Systems

A detailed modular modeling of an absorbent cooling system is presented in this paper. The model including the key components is described in terms of design parameters, inputs, control variables, and outputs. The model is used to simulate the operating conditions for estimating the behavior of individual components and system performance, and to conduct a sensitivity analysis based on the give...

متن کامل

Forecasting Peaks of Seasonal Influenza Epidemics ΠPLOS Currents Outbreaks

We present a framework for near real-time forecast of influenza epidemics using a simulation optimization approach. The method combines an individual-based model and a simple root finding optimization method for parameter estimation and forecasting. In this study, retrospective forecasts were generated for seasonal influenza epidemics using web-based estimates of influenza activity from Google ...

متن کامل

Predictive Validation of an Influenza Spread Model

BACKGROUND Modeling plays a critical role in mitigating impacts of seasonal influenza epidemics. Complex simulation models are currently at the forefront of evaluating optimal mitigation strategies at multiple scales and levels of organization. Given their evaluative role, these models remain limited in their ability to predict and forecast future epidemics leading some researchers and public-h...

متن کامل

Stochastic individual-based modelling of influenza spread for the assessment of public health interventions

Infectious respiratory diseases that are spread by interpersonal contact, such as influenza, tuberculosis and measles, cause a significant burden of disease worldwide. Influenza causes annual epidemics resulting in the infection of approximately 5-10% of adults and 20-30% of children worldwide, causing 250,000 to 500,000 deaths annually as estimated by the World Health Organization [WHO 2009]; ...

متن کامل

Mathematical modeling, analysis and simulation of Ebola epidemics

‎Mathematical models are the most important tools in epidemiology to understand previous outbreaks of diseases and to better understand the dynamics of how infections spread through populations‎. ‎Many existing models closely approximate historical disease patterns‎. ‎This article investigates the mathematical model of the deadly disease with severe and uncontrollable bleeding‎, ‎Ebola which is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012